746 research outputs found

    Measurement of Intraspinal Pressure After Spinal Cord Injury: Technical Note from the Injured Spinal Cord Pressure Evaluation Study.

    Get PDF
    Intracranial pressure (ICP) is routinely measured in patients with severe traumatic brain injury (TBI). We describe a novel technique that allowed us to monitor intraspinal pressure (ISP) at the injury site in 14 patients who had severe acute traumatic spinal cord injury (TSCI), analogous to monitoring ICP after brain injury. A Codman probe was inserted subdurally to measure the pressure of the injured spinal cord compressed against the surrounding dura. Our key finding is that it is feasible and safe to monitor ISP for up to a week in patients after TSCI, starting within 72 h of the injury. With practice, probe insertion and calibration take less than 10 min. The ISP signal characteristics after TSCI were similar to the ICP signal characteristics recorded after TBI. Importantly, there were no associated complications. Future studies are required to determine whether reducing ISP improves neurological outcome after severe TSCI

    Brain Monitoring: Do We Need a Hole? An Update on Invasive and Noninvasive Brain Monitoring Modalities

    Get PDF
    The ability to measure reliably the changes in the physical and biochemical environment after a brain injury is of great value in the prevention, treatment, and understanding of the secondary injuries. Three categories of multimodal brain monitoring exist: direct signals which are monitored invasively; variables which may be monitored noninvasively; and variables describing brain pathophysiology which are not monitored directly but are calculated at the bedside by dedicated computer software. Intracranial pressure (ICP) monitoring, either as stand-alone value or study of a dynamic trend, has become an important diagnostic tool in the diagnosis and management of multiple neurological conditions. Attempts have been made to measure ICP non-invasively, but this is not a clinical reality yet. There is contrasting evidence that monitoring of ICP is associated with better outcome, and further RCTs based on management protocol are warranted. Computer bedside calculation of “secondary parameters” has shown to be potentially helpful, particularly in helping to optimize “CPP-guided therapy.” In this paper we describe the most popular invasive and non invasive monitoring modalities, with great attention to their clinical interpretation based on the current published evidence

    Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt.

    Get PDF
    BACKGROUND: The Polaris valve is a newly released hydrocephalus shunt that is designed to drain cerebrospinal fluid (CSF) from the brain ventricles or lumbar CSF space. The aim of this study was to bench test the properties of the Polaris shunt, independently of the manufacturer. METHODS: The Polaris Valve is a ball-on-spring valve, which can be adjusted magnetically in vivo. A special mechanism is incorporated to prevent accidental re-adjustment by an external magnetic field. The performance and hydrodynamic properties of the valve were evaluated in the UK Shunt Evaluation Laboratory, Cambridge, UK. RESULTS: The three shunts tested showed good mechanical durability over the 3-month period of testing, and a stable hydrodynamic performance over 45 days. The pressure-flow performance curves, operating, opening and closing pressures were stable. The drainage rate of the shunt increased when a negative outlet pressure (siphoning) was applied. The hydrodynamic parameters fell within the limits specified by the manufacturer and changed according to the five programmed performance levels. Hydrodynamic resistance was dependant on operating pressure, changing from low values of 1.6 mmHg/ml/min at the lowest level to 11.2 mmHg/ml/min at the highest performance level. External programming proved to be easy and reliable. Even very strong magnetic fields (3 Tesla) were not able to change the programming of the valve. However, distortion of magnetic resonance images was present. CONCLUSION: The Polaris Valve is a reliable, adjustable valve. Unlike other adjustable valves (except the Miethke ProGAV valve), the Polaris cannot be accidentally re-adjusted by an external magnetic field.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Regulation of the cerebral circulation: bedside assessment and clinical implications

    Get PDF
    The regulation of the cerebral circulation relies on the complex interplay between cardiovascular, respiratory, and neural physiology. In health, these physiologic systems act to maintain an adequate cerebral blood flow (CBF) through modulation of hydrodynamic parameters; the resistance of cerebral vessels, and the arterial, intracranial, and venous pressures. In critical illness, however, one or more of these parameters can be compromised raising the possibility of disturbed CBF regulation and its pathophysiologic sequelae. The rigorous assessment of the cerebral circulation requires not only measuring CBF and its hydrodynamic determinants but also assessing the stability of CBF in response to changes in arterial pressure (cerebral autoregulation), the reactivity of CBF to a vasodilator (CO₂ reactivity for example), and the dynamic regulation of arterial pressure (baroreceptor sensitivity). Ideally, cerebral circulation monitors in critical care should be continuous, physically robust, allow for both regional and global CBF assessment, and be conducive to application at the bedside. The regulation of the cerebral circulation is impaired not only in primary neurologic conditions that affect the vasculature such as subarachnoid haemorrhage and stroke, but also in conditions that affect the regulation of intracranial pressure (such as traumatic brain injury and hydrocephalus) or arterial blood pressure (sepsis, or cardiac dysfunction). Importantly, this impairment is often associated with poor patient outcome. At present, the assessment of the cerebral circulation is primarily used as a research tool to elucidate pathophysiology or prognosis. However, when combined with other physiologic signals and online analytical techniques, cerebral circulation monitoring has the appealing potential to not only prognosticate patients, but also direct critical care management.JD is supported by a Woolf Fisher scholarship (NZ). MC is partially supported by the NIHR
    corecore